Descent and Landing Flight Campaign - March 2013

Flight Campaign Dates: March 18-28, 2013
Location: Mojave Air and Spaceport, Mojave CA
Flight Profiles: Simulated Martian and Lunar landing trajectories

Guidance Embedded Navigator Integration Environment (GENIE)
Charles Stark Draper Laboratory

GENIE is an autonomous flight control system designed to demonstrate planetary precision landing AGN&C and to facilitate the integration / demonstration of other landing technologies needed for exploration of planets, moons, and asteroids. GENIE provides a research flight control interface to test such follow on technologies as terrain relative navigation, autonomous hazard detection and autonomous flight management under real flight conditions.

XA-0.1B “Xombie”
Masten Space Systems

Xombie is a fully reusable vertical takeoff and vertical landing (VTVL) launch vehicle used for low speed and low altitude testing. The vehicle is equipped with a hypervisor that enables third party GN&C/avionics packages to control Xombie in flight while maintaining Masten’s GN&C as a supervisor and always-on safety net. The vehicle placed in the NASA funded Northrop Grumman Lunar Lander Challenge X Prize and has recently served as a landing systems test platform for Draper Laboratory and the NASA Jet Propulsion Laboratory (JPL).
Precision Landing Exploration Technology (PLANET) Demonstration

Problem Statement
- PLANET will mature Autonomous Guidance, Navigation, and Control (AGNC) technology required for precision lunar and planetary landing.
- sRLV flights allow the AGNC to fly lunar/planetary-like landing trajectories exercising the system in the most relevant terrestrial environment.
- Extends sRLV capabilities and enables broad range of future technology demonstrations for systems such as those needed for Autonomous Landing and Hazard Avoidance.

Proposed Flight Experiment

Experiment Readiness:
- The experiment is currently ready to fly

Test Vehicles:
- sRLV

Test Environment:
- An sRLV that can be controlled by the payload to fly the desired lunar or planetary precision landing trajectories in order to properly exercise the sensors and algorithms.

Test Apparatus Description:
- The key enabler for PLANET is the Guidance Embedded Navigator Integration Environment (GENIE) pictured below. GENIE is a stand-alone avionics package that controls the sRLV and houses the sensors and algorithms required to enable precision landing.

Technology Maturation
- The technology is currently TRL5. GENIE will be TRL6 after flying precision planetary/ lunar landing trajectories at proper speeds and altitudes.

Maturation Steps
1. Adapt and integrate GENIE AGNC system to sRLV Flight Vehicle
2. Perform series of flights demonstrating precision landing capability

Technology Development Team
- PI: Douglas Zimpfer, Draper Laboratory, dzimpfer@draper.com
- Funding: NASA FOP
- Technology Partner: NASA ALHAT Team

Objective of Proposed Experiment
- 1-Mature AGNC, 2-Extend capability of sRLV for EDL trajectories, 3-Enable future technology demonstrations
- Data obtained will be used to determine robustness of GENIE and the AGNC system. These results will then be used to determine future design enhancements.

TTR Planetary Approach & Landing Trajectory

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>240</td>
<td>51</td>
<td>21</td>
<td>197</td>
<td>200</td>
<td>75</td>
<td>20</td>
<td>Initial PAL trajectory validation</td>
</tr>
<tr>
<td>5</td>
<td>499</td>
<td>300</td>
<td>26.5</td>
<td>454</td>
<td>440</td>
<td>75</td>
<td>26</td>
<td>Performance Envelope Flight</td>
</tr>
</tbody>
</table>

Initial EDL trajectory from orbit

Boost Phase

Hypothetical EDL trajectory from orbit

Approach phase target

Approach Target Altitude

Approach Target Path Angle

Approach Target Speed

Constant Velocity subphase

Planetary Approach & Landing Phase

Notes
To Put it in Perspective…

- Empire State Building
 - NY, NY
 - 490m

- John Hancock Building
 - Boston, MA
 - 443m

- Draper HQ
 - Cambridge, MA
 - ~40m

C3 Flight

C4 Flight

C5 Flight